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Abstract :

This paper presents an arithmetic module genera-
tor based on an arithmetic description language called
ARITH. The use of ARITH makes possible (i) formal
description of arithmetic algorithms including those
using unconventional number systems, (ii) formal ver-
ification of described arithmetic algorithms, and (iii)
translation of arithmetic algorithms to equivalent HDL
codes. We employ ARITH to develop an arithmetic
algorithm library included in the generator. The devel-
oped generator supports 352 types of hardware algo-
rithms for parallel multiplication and produces highly-
reliable multiplier modules whose functions are com-
pletely verified at the algorithm level.

1. Introduction

Arithmetic circuits are of major importance in to-
day’s computing and signal processing systems. Nu-
merous algorithms for arithmetic computation have
been developed and implemented since the early days
of digital computers, and newer ones are being pro-
posed all the time [1], [2]. Most of the arithmetic al-
gorithms are devised by researchers who had trained
in a particular way to understand the basic arith-
metic fundamentals. Currently, we do not have a
systematic framework for manipulating arithmetic cir-
cuit structures based on various number systems (in-
cluding user-defined unconventional number systems).
Even the state-of-the-art design environment can pro-
vide only limited capability to create arithmetic circuit
structures.

Addressing this problem, we propose a new ap-
proach to designing arithmetic circuits using an arith-
metic description language called “ARITH” (see [3]
for earlier discussions on this topic). The key idea in
ARITH is to describe arithmetic algorithms with math-
ematical objects such as integer equations. The use of
ARITH makes possible (i) formal description of arith-
metic algorithms including those using unconventional
number systems, (ii) formal verification of described

arithmetic algorithms, and (iii) translation of arith-
metic algorithms to equivalent HDL codes. Examples
of number systems that can be handled by ARITH
include Redundant-Binary (RB) number system [4],
Signed-Digit (SD) number systems [5], Generalized
Signed-Digit (GSD) number systems [6], Positive-
Digit (PD) number systems [7] and Binary Carry-Save
number system [8].

This paper presents an application of ARITH to an
arithmetic module generator. ARITH is used as a data
format for the proposed generator. By using ARITH,
we can develop the arithmetic algorithm library in a
unified manner, and produce highly-reliable arithmetic
modules whose functions are completely verified in
a formal method. The language processing system
of ARITH incorporated in the generator verifies the
correctness of ARITH descriptions using formula ma-
nipulations as well as the conventional manipulations
such as *BMDs [9] and BDDs [10]. The hybrid ap-
proach is effective especially for verifying ARITH de-
scriptions in a short time. The generator can trans-
late the verified ARITH description into the equivalent
HDL description.

In this paper, we focus on a multiplier module gen-
erator (MMG) based on ARITH. The product specifi-
cation considered here is a parallel multiplier consist-
ing of Partial Product Generator (PPG), a partial prod-
uct accumulator (PPA), and a final stage adder (FSA).
Various hardware algorithms of PPG, PPA and FSA
are implemented in ARITH for the arithmetic algo-
rithm library. The developed MMG system [?] sup-
ports 352 types of hardware algorithms for parallel
multiplication and produces the corresponding HDL
(Verilog HDL and VHDL) codes containing the ex-
plicit gate-level netlists. The generated HDL code can
be downloaded from our website [?].

2. Basic concept of ARITH

2.1. Formal description of arithmetic algo-
rithms in ARITH

ARITH is a dedicated language for describing com-
puter arithmetic algorithms based on weighted num-
ber systems. In ARITH, we can employ high-level
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mathematical objects (i.e., number representation sys-
tems and arithmetic operations/formulae) for describ-
ing arithmetic algorithms. The underlying observation
here is that arithmetic circuits implement arithmetic
functions which should be dealt with in the (integer)
arithmetic domain rather than the (Boolean) logic do-
main.

ARITH description consists of two blocks:
typedef blocks and module blocks. The
typedef block is used to define arithmetic data
types, i.e., the number representation systems. The
module block includes functions of arithmetic
algorithms and internal structures.

We first describe the typedef block in details.
The weighted number system [1] defined in the
typedef block is specified by the tuple �������	� ,
where � is the weight vector and � is the digit set
vector, respectively. More precisely, � and � are
defined as follows:

� 
� ������������������������������������������ �!�����"�#�$�
� 
� �&%'���(%)�����*���������(%)������������%+� �,����%+��$�

(1)
where - is the most significant digit, and .0/�12-43 is the
least significant digit.

Each digit set is represented as an arithmetic inter-
val. An arithmetic interval is defined as a set of inte-
gers:5 687:9 � 6<;>= ��?�@�A�BDC


�FE�GIHKJML / 6<7:9 1 G 3ONP/ G 1 6Q;>= 3
NR/&S�T HKJVU �XW G8� 6<7:9'Y ?�@�A(B'��TZ3�[\� (2)

where J is the set of integers, J]U � is the set of positive
integers, and integer constants

687:9
,
6<;>=

, ?�@�A(B satisfy6<7:9 1 6<;>=
and ?�@�A(BI^`_ .

Using the above notation, we can define vari-
ous number systems including unconventional num-
ber systems. For example, the two’s complement (TC)
and the radix-2 signed-digit (SD2) number system are
given as follows:

W TC

�badc 
� ��egf � �(f ���0� ���������(f � �������h��f � �!� �(f � �$�
�iadc 
� � E _D��j�[\�������$� E _���jk[��$l

(3)

W SD2

�nm\o]pq
� �#f � �(f ����� �������h��f � ����������f � �,� �(f � �$�
�	m>orp 
� � E esj��(_���jk[\�������(� E esj\��_���jk[��$l

(4)

Figure 1 shows a typedef block for the SD2
number system, where
SD2.high: the most significant digit,
SD2.low: the least significant digit,
SD2{i}.weight: the weight at the

7
th digit set,

SD2{i}.min: the min. integer at the
7
th digit set,

SD2{i}.max: the max. integer at the
7
th digit set,

SD2{i}.step: the step at the
7
th digit set.

1: typedef SD2;
2: for(i, SD2.low, SD2.high) begin
3: SD2{i}.weight = Power(2, i);
4: SD2{i}.min = -1;
5: SD2{i}.max = 1;
6: SD2{i}.step = 1;
7: end
8: endtypedef

Figure 1. Radix-2 signed-digit number sys-
tem.

1: module SD_MULT(P, X, Y);
2: output TC P;
3: input TC X, Y;
4: constraint begin
5: P.high = 16; P.low = 0;
6: X.high = 7; X.low = 0;
7: Y.high = 7; Y.low = 0;
8: end
9: assertion P = X * Y;

10: structure begin
11: wire SD4_2 B;
12: wire SD2 PP[];
13: wire SD2 F;
14: constraint begin
15: B.high = 3; B.low = 0;
16: PP.high = 3; PP.low = 0;
17: for (i, 0, 3) begin
18: PP[i].high=i*2+8; PP[i].low=i*2;
19: end
20: F.high = 15; F.low = 0;
21: end
22: BOOTH_ENCODE U0 (B,X);
23: PPG U1 (PP, B, Y);
24: ACCUMULATE U2 (F,PP);
25: SD2TC U3 (P,F);
26: end
27: endmodule

Figure 2. Top module of an 8-bit binary
signed-digit multiplier.

At lines 2-7, we define the SD2 number system from
SD2.low digit to SD2.high digit.

On the other hand, the module blocks include
declarative statements of module I/O interface, func-
tional assertion, and structural description. As an ex-
ample, let us consider the hierarchical description of
an 8-bit SD2 multiplier. Figure 2 represents a module
block of SD_MULT at the top of the hierarchy. Basic
signals used in the ARITH description (i.e., X, Y and
P) are “integer signals.” Every integer signal, say X,
consists of “digit signals” X{7}, X{6}, X{5}, X{4},
X{3}, X{2}, X{1}, and X{0}. The integer signal
and its digit signals are associated with a specific num-
ber system defined by the typedef block.

Figure 3 shows the schematics of the SD2 multi-
plier at different levels of abstraction. Each component
(e.g., “Accumulator” in (a), “PPG1” in (b), and a solid
square in (c)) can be described as a module in ARITH.
The modules in Figs. 3 (a) and (b) correspond to the
shaded parts in Figs. 3 (b) and (c), respectively. The
internal structure of each module is described by using
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Figure 3. 8-bit binary signed-digit multiplier at various levels of abstraction.

the sub-modules on the corresponding shaded part.
Let us explain the SD_MULT module for more de-

tails.

W Statements of I/O interface (at lines 2-8):
The input/output signals X, Y, and P are declared
with TC number representation at lines 2-3. The
corresponding digit ranges are determined by us-
ing high and low at lines 4-8.

W Functional assertion (at line 9):
The function is described as an integer equation
P = X * Y, where the left-hand side indicates
output, and the right-hand side indicates input.

W Structural description (at lines 10-26):
The internal structure is described by using sub-
modules and internal signals. At lines 11-21,
the internal signals based on the radix-2/radix-4
Signed-Digit number systems (SD2/SD4) are de-
clared similarly to the above input/output signals,
where PP[] represents that PP is an array of in-
teger signals. At line 16, PP is defined as 4 in-
teger signals. The internal structure is given by
the sub-modules BOOTH_ENCODE (“Booth En-
coder” in Fig. 3), PPG (“Partial Product Genera-
tor” in Fig. 3), ACCUMULATE (“Accumulator” in
Fig. 3), and SD2TC (“SD2/TC Converter” in Fig.
3) at lines 22-25.

As shown in this example, we describe an arithmetic
algorithm in a hierarchical fashion. Each module is
composed of sub-modules that can be described in
ARITH at the lower level of abstraction. This is based
on the principle that an arithmetic circuit can be di-
vided into simpler sub-circuits which implement arith-
metic functions.

2.2. Formal Verification in ARITH system

The ARITH description can be formally verified by
the language processing system of ARITH (ARITH
system). The formal verification of arithmetic circuits
is usually performed by word-level DDs and *BMDs
[9], [11]. We can apply the conventional verification
techniques to ARITH descriptions. On the other hand,
we have a possibility for verifying ARITH descrip-
tions with formula manipulations. The ARITH system
has the equivalence checker using formula manipula-
tions in addition to the conventional techniques. Thus,
we can reduce the verification time of arithmetic algo-
rithms in ARITH.

In the following, let us briefly describe the verifica-
tion method based on formula manipulations. The pro-
posed verification method consists of “formula evalu-
ation” and “range evaluation” as follows:

W Formula evaluation:
Given a module, checks whether its structural de-
scription matches its functional assertion. We
first obtain the integer equations representing the
relationship between integer signals and their
digit signals. Second, we extract the set of func-
tional assertions from the sub-modules and re-
name their integer signals according to the struc-
tural description of the given module. Finally,
we consider the integer equations obtained from
the above two steps as a system of equations, and
solve it for the input/output integer signals. If the
obtained solution is equal to an integer equation
of the functional assertion, the formula evaluation
returns “true”.

W Range evaluation:
Given a module, checks whether hardware imple-
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Figure 4. Hardware algorithms supported by
MMG.

mentation is possible under the range constraints
of input/output signals. The range constraints
are examined on arithmetic intervals. From the
range of input/output signals, we evaluate the
arithmetic intervals of the functional assertion. If
the output arithmetic interval subsumes the input
arithmetic interval, the evaluation returns “true”.
This means that the given module provides suffi-
cient output dynamic range in order to cover the
input dynamic range.

We can prove that ARITH description holds correct
arithmetic circuit structures if and only if both formula
evaluation and range evaluation return true.

3. Design of a multiplier module genera-
tor based on ARITH

This section describes an application of ARITH to
a multiplier module generator (MMG). In this sys-
tem, ARITH is used for describing arithmetic algo-
rithms including those using unconventional number
systems. The arithmetic algorithm library based on
ARITH makes possible to produce reliable multiplier
modules in a systematic way.

We consider a parallel multiplier consisting of Par-
tial Product Generator (PPG), Partial Product Accu-
mulator (PPA), and Final Stage Adder (FSA). The
PPG stage first generates partial products from the
multiplicand and multiplier in parallel. The PPA stage
then performs multi-operand addition for all the gener-
ated partial products and produces their sum in carry-
save form. Finally, the carry-save form is converted to
the corresponding binary output at FSA.

According to the above specification, we can de-
termine a multiplication algorithm in terms of (i) in-
put word length, (ii) number representation system for
operands: signed or unsigned binary, and (iii) hard-
ware algorithms for PPG, PPA, and FSA. Figure 4
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Figure 5. MMG system flow.
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Figure 6. Verification time of MMG.

shows a list of the number representation systems and
hardware algorithms supported by MMG. In this pa-
per, let us omit the detailed explanation of the hard-
ware algorithms due to the page limitation (see our
website [?] and [1], [2] for more details).

3.1. System framework

Figure 5 is a block diagram of the proposed MMG,
which consists of (i) ARITH/HDL code generator,
(ii) ARITH system, and (iii) BDD-based equivalence
checker as follows:

W ARITH/HDL code generator:
Generates ARITH and HDL codes according
to the product specification given by designers.
The current version of MMG provides PPGs and
PPAs in ARITH and FSAs in HDL at this stage
since BDD-based equivalence checker can be ef-
fective for FSAs. Note here that all the hard-
ware algorithms for PPA, PPG and FSA can be
described in ARITH.
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Figure 7. Performance of 32 t 32 unsigned multipliers for HITACHI 0.18 u m process: (a) PPG group-
ing, (b) PPA grouping, (c) FSA grouping.

W ARITH system:
Verifies the generated ARITH codes using formal
verification techniques as described in the previ-
ous section. The verified ARITH codes are trans-
lated into the equivalent HDL codes.

W BDD-based equivalence checker:
Verifies the functional equivalence of the gener-
ated HDL code and a reference HDL code by
constructing their BDDs [10]. The reference
HDL code is derived from the verified ARITH
code of a ripple carry adder in advance. The rip-
ple carry adder is easily verified by ARITH sys-
tem.

Combining the results of ARITH system and BDD-
based equivalence checker, MMG obtains the HDL
codes verified completely at the algorithm level.

3.2. Experimental designs

In order to examine the verification time of MMG,
we have designed a set of parallel multipliers whose
operand lengths are ranging from 4 to 64 digits at ev-
ery 2 digit. Figure 6 illustrates the computation time
of MMG on a SUN Blade 2000 with 900MHz Ultra-
SPARC III and 2GB memory. The result shows that
MMG performs a complete verification of 64 t 64 par-
allel multipliers within 250 seconds. We can confirm
here that the proposed verification technique can be
useful for ARITH descriptions.

In the following, we evaluate all the types of par-
allel multipliers generated from MMG. The obtained
HDL codes can be synthesized using Synopsys Design
Compiler with the compile option “-only design rule
-boundary optimization.” We employ the Kyoto Uni-
versity’s standard-cell libraries targeted for HITACHI
0.18 u m process (Typical condition) [?], [12]. The de-
lay information is calculated according to the result
of place-and-route using Synopsys Milkyway/Apollo.

Information on the circuit area is also obtained from
the result of place-and-route.

Figure 7 shows all the types of 32 t 32 unsigned
multipliers generated from MMG. The vertical axis in-
dicates the circuit area, and the horizontal axis indi-
cates the circuit delay. Figure 8 compares three types
of unsigned multipliers for various operand lengths,
where Type A indicates the Kogge-Stone adder and
Dadda tree architecture with radix-4 Booth encoding,
Type B indicates the Han-Carlson adder and Balanced-
delay tree architecture, and Type C indicates the Block
CLA and (4;2) compressor tree architecture. Figure
9 illustrates the non-booth Array multipliers grouped
by FSA for various operand lengths. These results in-
dicate that the proposed MMG system can generate
various multipliers faithfully according to the design
specifications.

Our website [?] provides the detailed comparisons
of the typical multipliers as shown in Fig. 10. We can
compare the performance of multipliers in terms of (i)
hardware algorithms for PPG, PPA, and FSA, (ii) input
word lengths, and (iii) target cell libraries.

4. Conclusion

In this paper, we have proposed a multiplier module
generator based on an arithmetic description language
called ARITH. By using ARITH, we can develop the
arithmetic algorithm library in a unified manner. The
proposed generator on the website [?] supports 352
types of hardware algorithms for parallel multiplica-
tion and produces highly-reliable multiplier modules
whose functions are completely verified in a formal
method. Further investigations are being conducted to
develop datapath module generators based on ARITH
for DSP systems and public key cryptosystems.
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Figure 8. Comparison of three types of
unsigned multipliers for various operand
lengths.
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