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SUMMARY This paper presents a formal design of arith-
metic circuits using an arithmetic description language called
ARITH. The key idea in ARITH is to describe arithmetic algo-
rithms directly with high-level mathematical objects (i.e., num-
ber representation systems and arithmetic operations/formulae).
Using ARITH, we can provide formal description of arithmetic al-
gorithms including those using unconventional number systems.
In addition, the described arithmetic algorithms can be formally
verified by equivalence checking with formula manipulations. The
verified ARITH descriptions are easily translated into the equiv-
alent HDL descriptions. In this paper, we also present an ap-
plication of ARITH to an arithmetic module generator, which
supports a variety of hardware algorithms for 2-operand adders,
multi-operand adders, multipliers, constant-coefficient multipli-
ers and multiply accumulators. The language processing system
of ARITH incorporated in the generator verifies the correctness of
ARITH descriptions in a formal method. As a result, we can ob-
tain highly-reliable arithmetic modules whose functions are com-
pletely verified at the algorithm level.
key words: datapaths, formal design, arithmetic circuits, hard-

ware algorithms, hardware description language, module gener-

ator

1. Introduction

Arithmetic circuits are of major importance in today’s
computing and signal processing systems. Numerous
algorithms for arithmetic computation have been de-
veloped and implemented since the early days of digital
computers, and newer ones are still being proposed [1],
[2]. In addition to the standard binary arithmetic al-
gorithms, we can introduce non-binary arithmetic algo-
rithms for enhancing the performance of arithmetic cir-
cuits. These include high-radix number systems, redun-
dant number systems and other dedicated data struc-
tures designed for specific applications [3].

Most of the arithmetic algorithms are devised by
researchers who had trained in a particular way to
understand the basic arithmetic fundamentals. Cur-
rently, we do not have a unified framework for ma-
nipulating arithmetic circuit structures in a system-
atic way. The conventional Hardware Description Lan-
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guages (HDLs) cannot handle high-level arithmetic
data structures, arithmetic operations and formulae
with various number systems (including user-defined
unconventional number systems). Even the state-of-
the-art design environment can provide only limited
capability to create arithmetic circuit structures. This
sometimes requires us to describe structural details of
the arithmetic circuits at the lowest level of abstraction.

Addressing this problem, this paper presents a
new approach to designing arithmetic circuits using an
arithmetic description language called “ARITH” (see
[4] for earlier discussions on this topic). The key idea in
ARITH is to describe arithmetic algorithms with inte-
ger equations. The underlying observation here is that
most hardware algorithms for addition, subtraction and
multiplication can be naturally represented by a set of
mathematical objects such as integer equations. The
use of ARITH makes possible (i) formal description of
arithmetic algorithms including those using unconven-
tional number systems, (ii) formal verification of de-
scribed arithmetic algorithms, and (iii) translation of
arithmetic algorithms to the equivalent HDL descrip-
tions.

Early researches on arithmetic algorithm descrip-
tion are primarily based on the standard binary number
system. Reference [5], for example, presents a hard-
ware description language, called ACV language, to
describe arithmetic circuits in a hierarchical fashion,
and is closely related to our approach. The reported
language, however, is designed so as to build multi-
plicative Binary Moment Diagrams (*BMDs). It seems
difficult to handle arbitrary number systems. On the
other hand, ARITH is dedicated for describing arith-
metic algorithms based on various positional number
systems.

This paper also presents an application of ARITH
to an arithmetic module generator. By using ARITH,
we can develop an arithmetic algorithm library contain-
ing a wide variety of arithmetic algorithms in a unified
manner. The ARITH-based library is used for the gen-
eration. The language processing system of ARITH,
which is incorporated in the generator, formally verifies
the correctness of ARITH descriptions using formula
manipulations as well as the conventional techniques.
The verified ARITH descriptions are finally translated
into the equivalent HDL descriptions.
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The proposed generator supports various types
of hardware algorithms for 2-operand adders, multi-
operand adders, parallel multipliers, constant-coefficient
multipliers and multiply accumulators. Some of the
hardware algorithms are based on unconventional num-
ber systems such as Signed-Digit (SD) number system
[6]. For example, we have Booth encoder with radix-
4 SD number system, redundant binary addition tree,
and constant-coefficient multipliers with Signed-Weight
number system [7]. Even if such unconventional num-
ber systems are used in the hardware algorithms, we
can obtain highly-reliable arithmetic modules whose
functions are completely verified at the algorithm level.
In this paper, we demonstrate the capability of the
ARITH-based generator through some experimental re-
sults.

2. Arithmetic Description Language: ARITH

2.1 Formal description of arithmetic algorithms

ARITH is a dedicated language for describing computer
arithmetic algorithms based on weighted number sys-
tems. In ARITH, we can employ high-level mathemat-
ical objects (i.e., number representation systems and
arithmetic operations/formulae) for describing arith-
metic algorithms. We assume here that arithmetic cir-
cuits implement arithmetic functions which should be
dealt with in the (integer) arithmetic domain rather
than the (Boolean) logic domain.

ARITH description consists of two blocks:
typedef blocks and module blocks. The typedef block
is used to define arithmetic data types, i.e., the num-
ber representation systems. The module block includes
functions of arithmetic algorithms and internal struc-
tures. Every integer variable in the module block is
associated with a weighted number system defined by
the typedef block.

We first describe the typedef block. The weighted
number system [1] defined in the typedef block is as-
sociated with the tuple 〈W , D〉, where W is the weight

vector and D is the digit set vector, respectively. More
precisely, W and D are defined as follows:

W
4
= 〈wh, wh−1, · · · , wl+1, wl〉,

D
4
= 〈Dh, Dh−1, · · · , Dl+1, Dl〉,

(1)

where h is the most significant digit, and l (≤ h) is the
least significant digit. Each digit set is represented as
an arithmetic interval. An arithmetic interval is defined
as a set of integers:

[min, max, step]
4
= {u ∈ Z | (min ≤ u) ∧ (u ≤ max)

∧ ∃j(j ∈ Z0+ ∧ u = min + step · j)}, (2)

where Z is the set of integers, Z0+ is the set of non-
negative integers, and the integer constants min, max,

1: typedef SD2_1;

2: for(i, SD2_1.low, SD2_1.high) begin

3: SD2_1{i}.weight = Power(2, i);

4: SD2_1{i}.min = -1;

5: SD2_1{i}.max = 1;

6: SD2_1{i}.step = 1;

7: end

8: endtypedef

Fig. 1 Radix-2 signed-digit number system with digit set
{-1,0,1}.

and step satisfy min ≤ max and step ≥ 0.
Using the above notation, we can define various

number systems including unconventional number sys-
tems. For example, unsigned binary number system
(UB), two’s complement representation (TC), radix-
2 signed-digit number system with digit set {-1,0,1}
(SD2,1) and radix-4 signed-digit number system with
digit set {-2,-1,0,1,2} (SD4,2) are given as follows:

• UB

WUB
4
= 〈2h, 2h−1, · · · , 2i, · · · , 2l+1, 2l〉,

DUB
4
= 〈{0, 1}, · · · , {0, 1}〉.

(3)

• TC

WT C
4
= 〈−2h, 2h−1, · · · , 2i, · · · , 2l+1, 2l〉,

DT C
4
= 〈{0, 1}, · · · , {0, 1}〉.

(4)

• SD2,1

WSD2,1
4
= 〈2h, 2h−1, · · · , 2i, · · · , 2l+1, 2l〉,

DSD2,1
4
= 〈{−1, 0, 1}, · · · , {−1, 0, 1}〉.

(5)

• SD4,2

WSD4,2
4
= 〈4h, 4h−1, · · · , 4i, · · · , 4l+1, 4l〉,

DSD4,2
4
= 〈{−2,−1, 0, 1, 2}, · · · ,

{−2,−1, 0, 1, 2}〉.

(6)

Figure 1 shows a typedef block for SD2,1, where
SD2_1.high: the most significant digit,
SD2_1.low: the least significant digit,
SD2_1{i}.weight: the weight at the ith digit set,
SD2_1{i}.min: the min. integer at the ith digit set,
SD2_1{i}.max: the max. integer at the ith digit set,
SD2_1{i}.step: the step at the ith digit set.

At lines 2-7, we define SD2,1 from SD2_1.low digit to
SD2_1.high digit.

On the other hand, the module block is used to de-
scribe an arithmetic algorithm in a hierarchical fashion.
As an example, let us consider an 8-bit SD2,1 multiplier
as shown in Fig. 2. Each component (e.g., “Accumula-
tor” in (a), “PPG1” in (b), and each solid square in (c))
can be described as a module. The modules in Figs. 2
(a) and (b) correspond to the shaded parts in Figs. 2
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Fig. 2 8-bit SD2,1 multiplier at various levels of abstraction.

SD MULT (P, X,Y )
function:

assertion: P = X × Y

attributes: P.att = 〈〈−216, 215, · · · , 21, 20〉, 〈{0,1}, {0,1}, · · · ,{0,1},{0,1}〉〉
X.att = 〈〈−27, 26, · · · , 21, 20〉, 〈{0,1}, {0,1}, · · · ,{0,1},{0,1}〉〉
Y.att = 〈〈−27, 26, · · · , 21, 20〉, 〈{0,1}, {0,1}, · · · ,{0,1},{0,1}〉〉

structure:
components: BOOTH ENCODER (B, X)

PPG (PP,B, Y )
ACCUMULATOR (F,PP )
SD2TC (P, F )

attributes: B.att = 〈〈43, 42, 41, 40〉, 〈{−2,−1,0,1,2}, {−2,−1,0,1,2}, {−2,−1,0,1,2}, {−2,−1,0,1,2}〉〉
PP [0].att = 〈〈28, 27, · · · , 21, 20〉, 〈{−1,0,1}, {−1,0,1}, · · · , {−1,0,1}, {−1,0,1}〉〉
PP [1].att = 〈〈210, 29, · · · , 23, 22〉, 〈{−1,0,1}, {−1,0,1}, · · · , {−1,0,1}, {−1,0,1}〉〉
PP [2].att = 〈〈212, 211, · · · , 25, 24〉, 〈{−1,0,1}, {−1,0,1}, · · · , {−1,0,1}, {−1,0,1}〉〉
PP [3].att = 〈〈214, 213, · · · , 27, 26〉, 〈{−1,0,1}, {−1,0,1}, · · · , {−1,0,1}, {−1,0,1}〉〉
F.att = 〈〈215, 214, · · · , 21, 20〉, 〈{−1,0,1}, {−1,0,1}, · · · , {−1,0,1}, {−1,0,1}〉〉

Fig. 3 Formal description of 8-bit SD2,1 multiplier in Fig. 2 (a).

(b) and (c), respectively. The internal structure of each
module is described by using the sub-modules on the
corresponding shaded part.

Figure 3 shows a formal description of the SD2,1
multiplier at the top of the hierarchy (Fig. 2 (a)). The
formal description consists of two parts: “function” and
“structure”. The function part describes functional as-
sertions with integer equations. The structure part de-
scribes components that make up the function. In both
parts, the attributes of integer variables (e.g., P.att),
are specified with weighted number systems. The above
description forms the basis of the module block.

Figure 4 represents a module block corresponding
to Fig. 3. The module block includes declarative state-
ments of I/O interface (at lines 2-8), functional asser-
tion (at line 9) and structural description (at lines 10-
26). Basic signals used in the ARITH description (i.e.,
X, Y and P) are “integer signals.” Every integer sig-

nal, say X, consists of “digit signals” X{7}, X{6}, X{5},
X{4}, X{3}, X{2}, X{1}, and X{0}. The integer signal
and digit signals are associated with a specific number
system defined by the typedef block.

Let us explain the SD_MULT module in detail.

• Statements of I/O interface (at lines 2-8):
The input/output signals X, Y, and P are declared
with TC number representation at lines 2-3. The
corresponding digit ranges are determined by using
high and low at lines 4-8.

• Functional assertion (at line 9):
The function is described as an integer equation
P = X * Y, where the left-hand side indicates out-
put, and the right-hand side indicates input.

• Structural description (at lines 10-26):
The internal structure is described by using sub-
modules and internal signals. The internal signals
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1: module SD_MULT(P, X, Y);

2: output TC P;

3: input TC X, Y;

4: constraint begin

5: P.high = 16; P.low = 0;

6: X.high = 7; X.low = 0;

7: Y.high = 7; Y.low = 0;

8: end

9: assertion P = X * Y;

10: structure begin

11: wire SD4_2 B;

12: wire SD2_1 PP[];

13: wire SD2_1 F;

14: constraint begin

15: B.high = 3; B.low = 0;

16: PP.high = 3; PP.low = 0;

17: for (i, 0, 3) begin

18: PP[i].high=i*2+8; PP[i].low=i*2;

19: end

20: F.high = 15; F.low = 0;

21: end

22: BOOTH_ENCODER U0 (B,X);

23: PPG U1 (PP, B, Y);

24: ACCUMULATOR U2 (F,PP);

25: SD2TC U3 (P,F);

26: end

27: endmodule

Fig. 4 Top module of an 8-bit SD2,1 multiplier.

Digit RBA

(C1+C2+Z=

 X+Y+Ci1+Ci2)
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 X+Y+Cin)

SD_MULT
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SD2TC
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Fig. 5 Hierarchy diagram for the SD2,1 multiplier as shown in
Fig. 2.

based on SD2_1 and SD4_2 number systems are
declared similarly to input/output signals at lines
11-21, where PP[] represents that PP is an array of
integer signals. At line 16, it is determined that PP
contains 4 integer signals. The SD_MULT module
assumes the use of sub-modules BOOTH_ENCODER,
PPG, ACCUMULATOR, and SD2TC at lines 22-25.

As shown in this example, we describe an arithmetic
algorithm in a hierarchical fashion. Each module is
composed of sub-modules that can be described in-
dependently in ARITH. This is based on the princi-

1: module FULL_ADDER (C, S, X, Y, Z);

2: output UB<enc_type> C, S;

3: input UB<enc_type> X, Y, Z;

4: constraint begin

5: C.high = 1; C.low = 1;

6: S.high = 0; S.low = 0;

7: X.high = 0; X.low = 0;

8: Y.high = 0; Y.low = 0;

9: Z.high = 0; Z.low = 0;

10: end

11: assertion C + S = X + Y + Z;

12: structure begin

13: assign S#L = X#L^Y#L^Z#L;

14: assign C#L = X#L&Y#L|(X#L|Y#L)&Z#L;

15: end

16: endmodule

Fig. 6 Module including logical expressions.

ple that an arithmetic circuit can be divided into sim-
pler sub-circuits, which themselves compute arithmetic
functions. Figure 5 shows a hierarchy diagram for the
SD2,1 multiplier.

We also describe arbitrary logical expressions in
ARITH. Figure 6 shows an example of modules includ-
ing logical expressions. An encoding type <enc_type>

is declared for input/output signals at lines 2-3. The
encoding type is defined in the typedef block. In this
example, we assume that the input/output signals are
given by a single bit L. Therefore, the internal struc-
ture is described as lines 13-14, where X#L, Y#L, Z#L,
S#L and C#L indicate the logic signals of X, Y, Z, S and
C, respectively.

The ARITH grammar is given by the denotational
semantics based on meta-notation [8]. Denotational
definitions are available for the automatic construction
of the compilers. Figures 7 and 8 are examples of the
syntactic domain and semantic domain, respectively.
Both domains are formally defined by using the ab-

stract grammar, where A
4
= B, A∗, A|B, a : A; b : B

denote a production rule, a list, a choice and an aggre-
gate, respectively. The semantics of ARITH description
can be represented with mathematical objects such as
sets and functions. The full abstract grammar is given
on our website [9].

2.2 Formal verification in ARITH

Functional verification of arithmetic circuits remains to
be difficult although recent verification technology can
handle designs with millions of gates. In general, it
requires time-consuming circuit simulation due to the
large number of input/output variables. It is almost
impossible to simulate 100% functionality if the number
of input variables increases. The formal verification
techniques have gained large attention to ensure 100%
functional correctness of a design instead of simulating
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File
4
= Block*

Block
4
= Module | Typedef

Module
4
= moduleId : ModuleId;

argumentList : ArgumentList;

moduleBody : ModuleBody

· · ·

Fig. 7 Definition of syntactic domain.

TopData
4
= moduleDataMap : ModuleDataMap ;

typeDataMap : TypeDataMap

ModuleDataMap
4
= ModuleDataElement*

ModuleDataElement
4
=
moduleName : ModuleName ;

moduleData : ModuleData

· · ·

Fig. 8 Definition of semantic domain.

some vectors.
The ARITH description can be formally verified

by the language processing system of ARITH (ARITH
code verifier). It is known that word-level DDs or
*BMDs [10], [5] are useful for the formal verification
of arithmetic circuits. We can apply the conventional
verification techniques to ARITH descriptions. In addi-
tion, we have a definite possibility for verifying ARITH
descriptions with formula manipulations. The ARITH
code verifier can perform the equivalence checking with
formula manipulations as well as the conventional tech-
niques.

In the following, we describe the equivalence check-
ing with formula manipulations. The basic idea is
to check for every module (i) whether its structural
description matches its functional assertion, and (ii)
whether hardware implementation is possible under the
range constraints of input/output signals. The pro-
posed verification method consists of “formula eval-
uation” and “range evaluation” corresponding to the
above two tasks, respectively. We assume that ARITH
description holds correct arithmetic circuit structures
if and only if both evaluations return true.

Let us explain these evaluations using SD_MULT in
Fig. 4.

• Formula evaluation
The formula evaluation returns “true” if the inte-
ger equations of internal structures are equivalent
to those of functional assertion. The formula eval-
uation procedure is as follows:

1. Obtain the integer equations representing the
relationship between integer signals and their
digit signals. Thus, we have



























P = P{16}+ P{15}+ · · · + P{1}+ P{0},
X = X{7}+ X{6}+ · · · + X{1}+ X{0},
Y = Y {7}+ Y {6}+ · · · + Y {1}+ Y {0},
B = B{3}+ B{2}+ B{1}+ B{0},
PP = PP [3] + PP [2] + PP [1] + PP [0],
F = F{15}+ F{14}+ · · · + F{1}+ F{0},

(7)

where P indicates the output signal; X and
Y indicate the input signals; B, PP and F

indicate the internal signals.
2. Extract the set of functional assertions from

submodules and rename the integer signals
according to the given structural description.
Thus, we have















B = X,

PP [3] + PP [2] + PP [1] + PP [0] = B ∗ Y,

F = PP [3] + PP [2] + PP [1] + PP [0],
P = F.

(8)

3. Solve the system of integer equations obtained
from the above two steps for the input/output
signals. We employ Gaussian Elimination
method and Groebner-bases method [11] for
solving the system of linear and non-linear
equations, respectively. Thus, we have

P = X ∗ Y. (9)

If the obtained solution is equal to the given func-
tional assertion (i.e., P = X ∗Y ), the formula eval-
uation returns “true”.

• Range evaluation
The range evaluation returns “true” if the range
constraints of input/output signals are compatible
with the functional assertion of the given module.
The range constraints are examined on arithmetic
intervals. The range evaluation procedure is as fol-
lows:

1. Calculate the arithmetic interval of left-hand
side of the functional assertion. In Fig. 4,
the arithmetic interval of P (i.e., output ) is
evaluated as [−65536, 65535, 1].

2. Calculate the arithmetic interval of right-hand
side of the functional assertion. In Fig. 4,
the arithmetic interval of X*Y (i.e., input) is
evaluated as [−16256, 16384, 1].

If the output arithmetic interval subsumes the in-
put arithmetic interval, the range evaluation re-
turns “true”. This means that the given module
provides sufficient output dynamic range in order
to cover the input dynamic range.

2.3 Translating ARITH codes to HDL codes

ARITH descriptions can be converted into the equiva-
lent HDL (VHDL or Verilog HDL) descriptions. This is
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1: module SD_MULT (P, X, Y);

2: output [16:0] P;

3: input [7:0] X, Y;

4: wire [3:0] Bs, Bd1, Bd0;

5: wire [8:0] PP0p, PP0n;

6: wire [10:2] PP1p, PP1n;

7: wire [12:4] PP2p, PP2n;

8: wire [14:6] PP3p, PP3n;

9: wire [15:0] Fp, Fn;

10: BOOTH_ENCODE U0(Bs,Bd1,Bd0,X);

11: PPG U1(PP0p,PP0n,PP1p,PP1n,PP2p,PP2n,

PP3p,PP3n,Bs,Bd1,Bd0,Y);

12: ACCUMULATE U2(Fp,Fn,PP0p,PP0n,PP1p,PP1n,

PP2p,PP2n,PP3p,PP3n);

13: SD2TC U3(P,Fp,Fn);

14: endmodule

Fig. 9 Verilog HDL code corresponding to Fig. 4.

just a syntactical conversion without intelligence. Fig-
ure 9 shows a Verilog HDL code corresponding to the
ARITH code in Fig. 4. The integer variables are en-
coded into binary variables. For example, an integer
variable B with SD4,2 (at line 11 in Fig.4) is encoded
into three binary variables Bs, Bd1 and Bd0 (at line 4 in
Fig.9). Note that The encoding method can be given
depending on the target technologies. We confirm here
that ARITH description has a higher level of readabil-
ity compared with the conventional HDL description.

3. Arithmetic module generator based on

ARITH

This section describes an application of ARITH to
an arithmetic module generator (AMG). We employ
ARITH for describing arithmetic algorithms including
those using unconventional number systems in a uni-
fied manner. The product specifications considered
here are 2-operand addition, multi-operand addition,
multiplication, constant-coefficient multiplication, and
multiply accumulation. The major advantage of the
generated modules over the conventional IPs is its ca-
pability to provide a formally verified function even if
the hardware algorithm contains unconventional num-
ber systems.

3.1 System framework

Figure 10 is a block diagram of AMG, which consists
of (i) ARITH code generator, (ii) ARITH code verifier,
and (iii) ARITH/HDL translator as follows:

• ARITH code generator:
Generates ARITH codes according to the design
specification given by designers. In the generation,
parameterized algorithms are retrieved from the
arithmetic algorithm library.

Arithmetic module generator

ARITH code verifier

(Formula manipulation + BDD)

ARITH/HDL translator

ARITH code generator

Verified

ARITH code

ARITH code

Design

specification

Verified

HDL code

Arithmetic

algorithm

library

Fig. 10 AMG system flow.

• ARITH code verifier:
Verifies the generated ARITH codes using the
equivalence checking with formula manipulations.
The BDD-based equivalence checking [12] is per-
formed only for 2-operand adders.

• ARITH/HDL translator:
Translates the verified ARITH codes into the
equivalent HDL codes. This can be done simply
by the one-to-one mapping.

As a result, AMG obtains the HDL codes verified
formally at the algorithm level. The generated ARITH
codes are registered into the arithmetic algorithm li-
brary after every successful verification, and retrieved
them when the same specification is requested.

3.2 Hardware algorithms

AMG supports various hardware algorithms for 2-
operand adders and multi-operand adders. These hard-
ware algorithms are also used to generate multipliers,
constant-coefficient multipliers and multiply accumula-
tors. The operand length in AMG is basically covered
from 4 bits to 64 bits. In the following, we briefly de-
scribe the hardware algorithms that can be handled by
AMG (see our AMG website [13] and [1],[2] for more
details).

3.2.1 Two-operand addition algorithms

AMG has 11 types of 2-operand addition algorithms.
Table 1 classifies all the algorithms into 5 classes: Rip-
ple carry, Carry lookahead, Parallel prefix, Carry select,
and Carry skip.

3.2.2 Multi-operand addition algorithms

AMG has 8 types of multi-input 2-output addition al-
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Table 1 Two-operand addition algorithms

Class Algorithm

Ripple carry Ripple carry adder

Carry lookahead
Carry lookahead adder (CLA)
Ripple-block CLA
Block CLA

Parallel prefix
Kogge-Stone adder
Brent-Kung adder
Han-Carlson adder

Carry select
Carry select adder
Conditional sum adder

Carry skip
Fixed-block-size carry skip adder
Variable-block-size carry skip adder

Table 2 Multi-operand addition algorithms

Component
Level of design optimization

Word-level design
Bit-level
optimized design

(3,2) counter

Array

Dadda tree
Wallace tree
Overturned-stairs tree
Balanced delay tree

(4;2) compressor (4;2) compressor tree
(7,3) counter (7,3) counter tree

RB adder RB addition tree

Table 3 Verification time of AMG

Arithmetic module
Verification time [s]

16 bits 32 bits 64 bits

Two-operand adder 0.75 1.82 6.09
Multi-operand adder 65.40 84.00 111.10
Multiplier 26.50 53.48 127.70
Multiply accumulator 25.62 54.30 158.90

gorithms, where the number of operands is from 4 to 64.
Table 2 shows hardware algorithms that can be handled
by the generator, where the bit-level optimized design
indicates that the matrix of operands is reorganized to
minimize the number of basic components. These ba-
sic components include (3,2) counter, (4;2) compressor,
(7,3) counter, and redundant-binary (RB) adder.

3.2.3 Multiplication algorithms

AMG provides parallel multipliers consisting of Partial
Product Generator (PPG), Partial Product Accumula-
tor (PPA), and Final Stage Adder (FSA). The PPG
stage first generates partial products from the multipli-
cand and multiplier in parallel. The PPA stage then
performs multi-operand addition for all the generated
partial products and produces their sum in carry-save
form. Finally, the carry-save form is converted to the
corresponding binary output at FSA.

Figure 11 shows hardware algorithms for PPG,
PPA, and FSA. Note here that PPAs and FSAs corre-
spond to multi-operand adders and 2-operand adders.
In addition, we have 2 types of PPGs in AMG. In to-
tal, AMG supports 352 types of hardware algorithms
for parallel multiplication.

Ripple carry adder

Carry lookahead adder

Ripple-block  CLA

Block CLA

Brent-Kung adder

Kogge-Stone  adder

Han-Carlson adder

Carry select  adder

Conditional sum adder

Carry skip adder

Final  stage adder

Array

Wallace  tree

Dadda tree

(4;2) compressor  tree

(7,3) counter tree
Overturned-stairs  tree

Balanced-delay  tree

RB addition tree

Partial  product  accumulator

Unsigned  binary

Two s complement

Number system Partial  product  generator

Non-Booth

Radix-4 modified Booth

Fig. 11 Hardware algorithms for parallel multipliers and mul-
tiply accumulators.

3.2.4 Constant-coefficient multiplication algorithms

AMG provides constant-coefficient multipliers in the
form: p = Rx, where R is an integer coefficient, and
x and p are the integer input and output. The hard-
ware algorithms for constant-coefficient multiplication
are based on multi-input 1-output addition algorithms
(i.e., combinations of PPAs and FSAs). There are many
possible choices for the multiplier structure for a spe-
cific coefficient R. The complexity of multiplier struc-
tures significantly varies with the coefficient value R.

We consider here the use of special number repre-
sentation called Signed-Weight (SW) number system
[7], which is useful for constructing compact PPAs.
At present, the combination of CSD (Canonic Signed-
Digit) coefficient encoding technique [14] with the SW-
based PPAs seems to provide the practical hardware
implementation of fast constant-coefficient multipliers.
As a result, AMG supports such hardware algorithms
for constant-coefficient multiplication, where the range
of R is from −231 to 231 − 1.

3.2.5 Multiply accumulation algorithms

AMG provides multiply accumulators in the form:

p =
∑

N

i=0 xi × yi, where xi and yi are the integer in-
puts/constants, p is the integer output, and N(∈ {1, 2})
is the integer constant. The operand length is from 4
bits to 32 bits. A multiply accumulator is generated
by a combination of hardware algorithms for multipli-
ers and constant-coefficient multipliers. All the par-
tial products from PPGs are accumulated in carry-save
form by a single PPA. The carry-save form is converted
to the corresponding binary output by an FSA.

3.3 Experimental designs

To evaluate the verification time of AMG, we have
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Fig. 12 Latency of two-operand adders for various operand
lengths.
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Fig. 13 Area of two-operand adders for various operand
lengths.
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Fig. 14 Output arrival profile of multi-operand adders.

designed the four types of arithmetic modules whose
operand lengths are 16, 32, and 64 bits. Table
3 illustrates the verification time of AMG on Intel
Pentium 4 CPU 2.80GHz and 2GB memory, where
“Two-operand adder” indicates the Kogge-Stone adder,
“Multi-operand adder” indicates the 64-operand Wal-
lace tree, “Multiplier” indicates the carry lookahead

3 4 5 6 7 8 9

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Delay [ns]

A
re

a
 [

m
m

2
]

Type A

Type B

Type C

64 bit

32 bit

16 bit
8 bit

Fig. 15 Comparison of three types of unsigned multipliers.

adder and RB addition tree with radix-4 modified
Booth encoder, and “Multiply accumulator” indicates
the ripple carry adder and overturned-stairs tree with
radix-4 modified Booth encoder. Note that the “Multi-
ply accumulator” has a function given by p = x0 ×y0 +
x1 + x2. The result shows that AMG performs a com-
plete verification of the 64-bit multiply accumulator at
most 160 seconds.

In the following, let us evaluate the performance
of arithmetic modules generated from AMG. The mod-
ules have been synthesized using Synopsys Design
Compiler with the compile option “-only design rule
-boundary optimization.” For the synthesis, we em-
ployed the Kyoto University’s standard-cell library tar-
geted for HITACHI 0.18 µm process (Typical condi-
tion) [15], [16]. The delay/area information was calcu-
lated according to the delay/area model given by the
cell library. Note that the estimated circuit delay of a
standard full adder is 0.27ns.

The evaluation results are summarized as shown in
Figs. 12-15. Figures 12-13 illustrate the performance of
two-operand adders for various operand lengths. Figure
14 shows the output arrival profile of 32-bit 32-operand
adders, where the horizontal axis indicates the output
bit position, and the vertical axis indicates the circuit
delay. Figure 15 compares three types of unsigned mul-
tipliers for various operand lengths, where Type A in-
dicates the Kogge-Stone adder and Dadda tree archi-
tecture with radix-4 Booth encoding, Type B indicates
the Han-Carlson adder and Balanced-delay tree archi-
tecture, and Type C indicates the Block CLA and (4;2)
compressor tree architecture. The above results sug-
gests that AMG can generate the arithmetic modules
faithfully according to the design specifications.

Figure 16 shows 32×32 unsigned multipliers gen-
erated from AMG, where the horizontal axes indicate
the circuit delay, and vertical axes indicate the circuit
area. Table 4 shows the numerical results of arithmetic
modules obtained from AMG. The types “Small” and
“Fast” are the best circuits under area optimization
and delay optimization, respectively. From Fig. 16, we
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Table 4 Performance evaluation

Arithmetic Unit Type
Area Delay Area×Delay
[µm2] [ns] [µm2

×ns]

64-bit two-operand adder
Small 8355.84 16.16 135030.37
Fast 64035.84 2.25 144080.65

32-bit multiplier
Small 175241.06 18.12 3175368.04
Fast 220328.69 4.74 1044357.98

32-bit constant-coefficient multiplier Small 41587.01 15.34 637944.76
(p = 299792458 × x) Fast 81982.87 4.39 359904.79

32-bit multiply accumulator Small 183566.00 18.68 3429012.88
(p = x0 × y0 + x1 + x2) Fast 232947.00 4.76 1108827.72

can confirm that the performance of multipliers heavily
depends on hardware algorithm. Thus, AMG can pro-
duce and evaluate a variety of the hardware algorithms
including those using unconventional number systems
in a unified manner. Note here that we have different
distributions in the case of other target technologies.

The other evaluation results can be available on
our website [13] which would be helpful for prospective
designers as a reference.

4. Conclusion

In this paper, we have presented a dedicated language
for describing arithmetic algorithms called ARITH.
The use of ARITH makes possible the formal descrip-
tion and verification of arithmetic algorithms including
those using unconventional number representation sys-
tems. For arithmetic circuit designers, ARITH may
provide a unified framework of design optimization
bridging the gap between algorithm-level design and
circuit-level design. The extension of ARITH to generic
arithmetic circuits is being left for future study.

This paper have also proposed an arithmetic mod-
ule generator based on ARITH. The proposed genera-
tor supports various hardware algorithms for 2-operand
adders, multi-operand adders, multipliers, constant-
coefficient multipliers and multiply accumulators. In
addition, the generated modules can be completely ver-
ified in a formal method. Further investigations are
being conducted to develop advanced module genera-
tors based on ARITH for DSP systems and public key
cryptosystems.

The proposed ARITH-based generator would be
available from our website [13] on a trial basis. Fig-
ure 17 shows the system framework for our web ser-
vice. We first specify (i) target function, (ii) hardware
algorithms, (iii) operand length, and (iv) number rep-
resentation system for operands from the web interface.
The generator then generates an arithmetic module ac-
cording to the specification. The performance evalu-
ator operates after the successful generation. Finally,
the generated module and its performance data are pro-
vided through the web interface. The AMG database
registers and retrieves design specifications, generated
modules in HDLs, and performance data.

(c)

(b)

(a)

4 6 8 10 12 14 16

0.15

0.20

0.25

0.30

0.35

0.40

Delay [ns]
A

re
a

 [
m

m
2
]

Non−Booth

Radix−4 modi"ed Booth

4 6 8 10 12 14 16

0.15

0.20

0.25

0.30

0.35

0.40

Delay [ns]

A
re

a
 [

m
m

2
]

Array

Wallace tree

Overturned−stairs tree

Blanced−delay tree

(4;2) compressor tree

(7,3) counter tree

Dadda tree

RB addition tree

4 6 8 10 12 14 16

0.15

0.20

0.25

0.30

0.35

0.40

Delay [ns]

A
re

a
 [

m
m

2
]

Ripple carry adder

Carry lookahead adder

Ripple−block CLA

Block CLA

Kogge−Stone adder

Brent−Kung adder

Han−Carlson adder

Carry select adder

Conditional sum adder

Variable−block−size carry skip adder

Fig. 16 Performance of 32 bit unsigned binary multipliers for
HITACHI 0.18µm process : (a) PPG grouping, (b) PPA group-
ing, (c) FSA grouping.
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Fig. 17 System framework for web service.
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